About 102,000 results
Open links in new tab
  1. 一文了解Transformer全貌(图解Transformer)

    Sep 26, 2025 · 网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1. Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成 …

  2. 如何从浅入深理解 Transformer? - 知乎

    Transformer升级之路:1、Sinusoidal位置编码追根溯源 Transformer升级之路:2、博采众长的旋转式位置编码 猛猿:Transformer学习笔记一:Positional Encoding(位置编码) 解密旋转位 …

  3. 如何最简单、通俗地理解Transformer? - 知乎

    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点 …

  4. Transformer 和 cnn 是两条差异巨大的路径吗? - 知乎

    Transformer 和 CNN,真的是两条差异巨大的路径吗? 两者设计逻辑不一样,但目标一致——让机器看懂东西 CNN 是图像领域的老炮,靠“局部感知+权值共享”吃饭。 简单说,它专注于看图 …

  5. 挑战 Transformer:全新架构 Mamba 详解

    Sep 23, 2025 · 而就在最近,一名为 Mamba 的架构似乎打破了这一局面。 与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 …

  6. 为什么 2024 年以后 MMDiT 模块成为了大规模文生视频或者文生 …

    而且对于纯transformer架构,文本tokens和图像tokens拼接在一起也是很自然且容易的事情(UNet的图像是2D特征,而文本是1D特征)。 而且,SD3的技术报告中其实也对不同的架构 …

  7. 如何理解 Swin Transformer 和 Vision Transformer不同 ... - 知乎

    Swin Transformer 的总体结构 Swin Transformer 总体结构 从上图我们可以观察到在输入端有一个 Patch Partition 的操作,也就是 Vision Transformer 常规的切图。 然后是经过一个线性映射进 …

  8. 你对下一代Transformer架构的预测是什么? - 知乎

    2. 引入随机化(Randomized Transformer) Transformer巨大的规模使得不管训练还是推理都极具挑战。 然而,很少有人知道的是,引入随机化矩阵算法可以减少Transformer需要的FLOPs。 …

  9. Transformer - Attention is all you need - 知乎

    《Attention Is All You Need》是Google在2017年提出的一篇将Attention思想发挥到极致的论文。该论文提出的Transformer模型,基于encoder-decoder架构,抛弃了传统的RNN、CNN模 …

  10. 有没有比较详细通俗易懂的 Transformer 教程? - 知乎

    Transformer目前没有官方中文译名,暂时就叫Transformer吧。 在该论文中,作者主要将Transformer用于机器翻译 [2] 任务,后来研究者们发现Transformer在自然语言处理的很多任 …